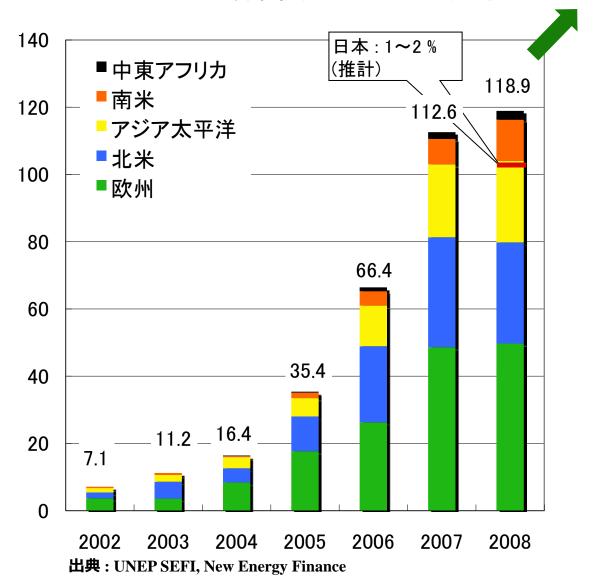
再生可能エネルギー政策シンポジウム

第3部「望ましい固定価格買取制度への円卓会議」

望ましい制度に向けて

2010年7月1日

特定非営利活動法人 環境エネルギー政策研究所 自然エネルギー政策プラットフォーム(JREPP)事務局



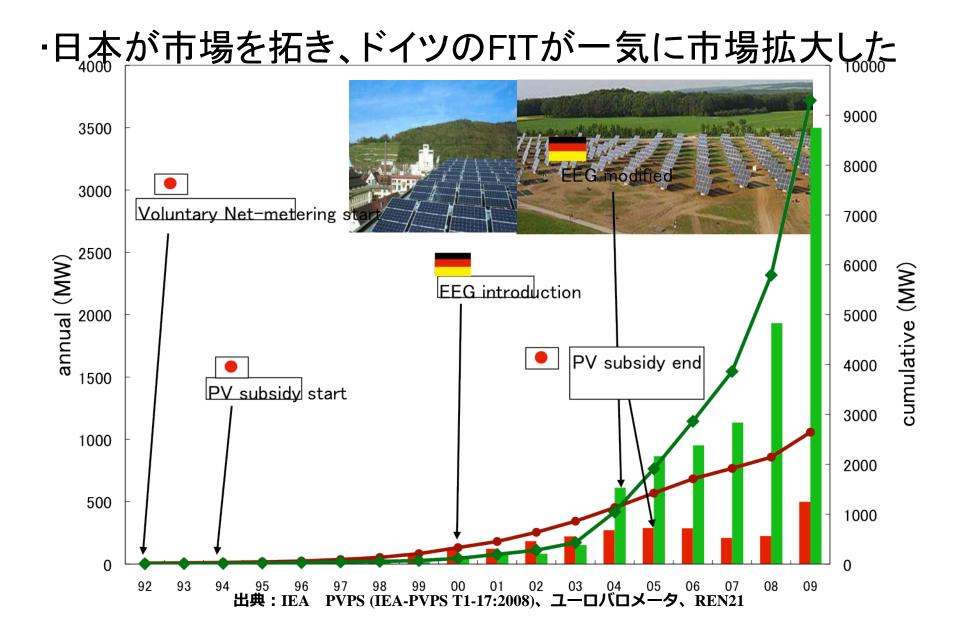
■ Lunas to Suttinate Corp. Painer
環境エネルギー政策研究所 東京都中野区中野4-7-3 Tel 03-5318-3331 Fax 03-3319-0330 http://www.isep.or.ip/

自然エネルギー市場はすでに急成長している

自然エネルギーへの新規投資(2002-2008、10億ドル)

株式時価総額の比較(2009年5月) (主要日本企業vs世界の自然エネ企業)

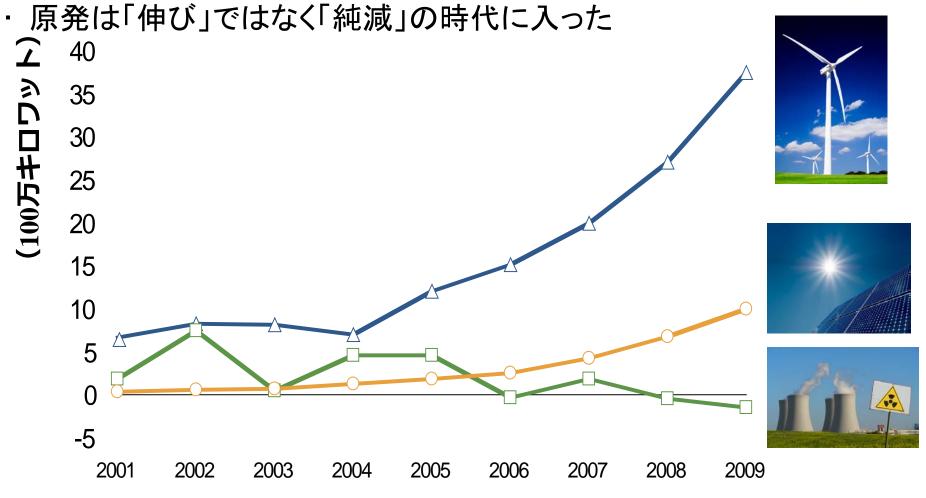
順位	企業名	(億円)
1	トヨタ自動車(株)	123,783
5	ホンダ	50,733
9	東京電力(株)	32,266
11	Xinjiang Goldwind S&T(中国)	23,978
13	新日本製鐵(株)	23,348
16	Iberdrola Renovavles(スペイン)	17,810
17	中部電力(株)	16,593
18	First Solar, Inc(アメリカ)	14,690
19	京セラ(株)	14,348
20	Vestas(デンマーク)	12,870
21	(株)東芝	12,300
22	シャープ(株)	11,70
23	三菱重工業(株)	11,400
26	東京ガス(株)	9,647
28	新日本石油(株)	8,069
29	EDP Renovaveis(ポルトガル)	7,540
35	Gamesa (スペイン)	4,810
36	REC(ノルウェー)	4,680
37	J-POWER	4,639
39	(株)SUMCO	3,810
40	三洋電機(株)	3,720
41	昭和シェル石油(株)	3,328
42	Solar World(アメリカ)	2,990
43	EDF Energies (ポルトガル)	2,990
44	富士重工業(株)	2,842
45	Suzlon(インド)	2,298
46	Sunteh Power(中国)	2,162
47	q-cells(ドイツ)	1,820


出典:環境エネルギー政策研究所作成

自然エネルギーの本流化;風力発電

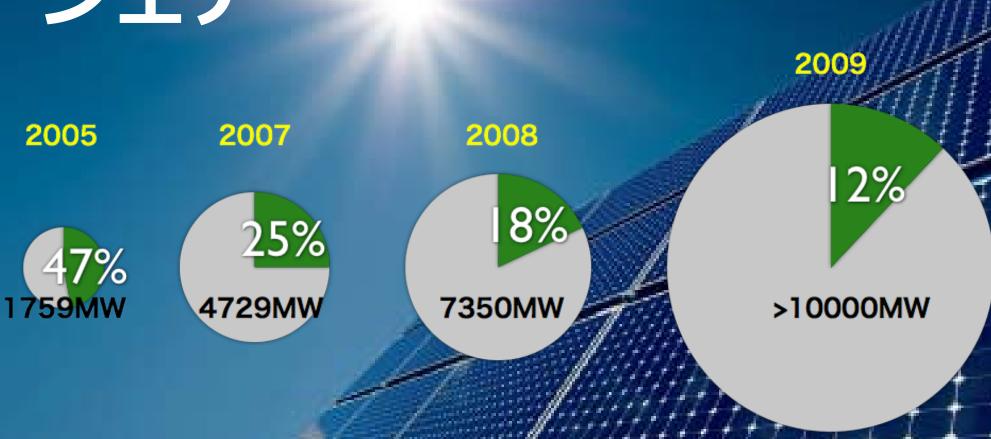
・自然エネルギー革命の先頭に立つ風力発電

自然エネルギーの本流化;太陽光発電



ドイツにみる自然エネルギーの「7重の配当」

- 1.電力供給の主力:16%('08)
- 2.自給率の向上と化石費用の節約
- 3.CO2削減: 1.2億トン('08)
- 4. 産業経済効果5兆円('08)
- 5.雇用効果:27万人('08)
- 6.地域の活性化効果
- 7.お金のグリーン化


倍々で伸びる分散型自然エネルギー

・まず風力発電、次いで太陽光発電が原発の伸びを追い越した

急拡大する世界市場縮小する日本の

シェア

再生可能エネルギーの全量買取制度 本日の論点

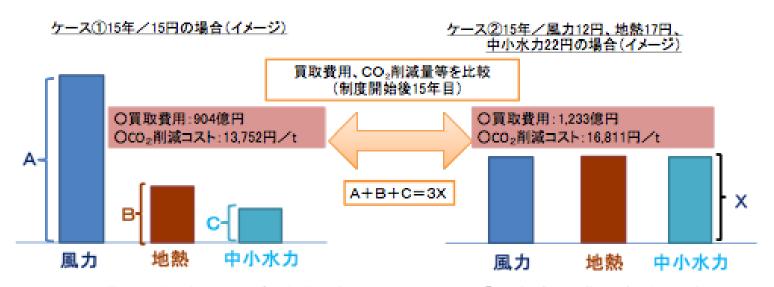
より良い制度の構築に向けて

A.買取対象	(未利用バイオマス?)
B.住宅用太陽光の取扱【論点2】	全量か、余剰か
C.新設•既設	新設でほぼコンセンサス
D.買取価格【論点1】	グリーン成長の要
E.買取期間	15~20年でほぼコンセンサス
F.環境価値(CO2削減)【論点3】	環境価値の帰属
G.国民負担と負担軽減【論点5】	
(1)国民負担	投資と責任、他エネルギーとのバランス
(2)負担軽減	低所得者層も考慮
H.系統制約と系統整備【論点4】	優先接続•給電
I. その他の論点【論点6】	
(1)RPS法の取り扱い	経過措置、移行措置
(2)社会的合意と規制改革	新たなルールの必要性

【論点1】なぜ再生可能エネルギーごとのコストベースが必要か

【その1】政策目的である「普及」を最優先するため

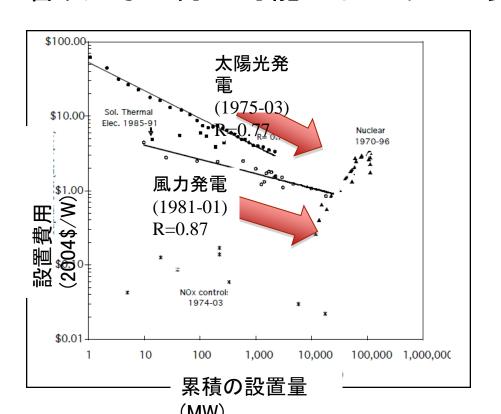
【その2】全量買取制度の基本原理に基づく考えから


【その3】「一律価格での買い取り」の歴史的な失敗から

【その4】価格を決定する基本原理となるため

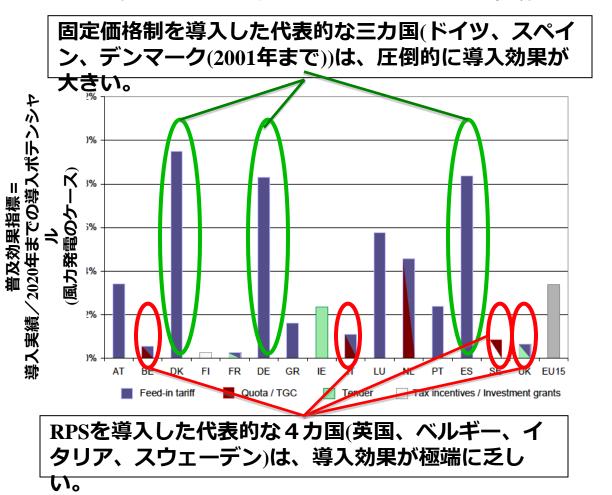
【その5】自然エネルギーはそれぞれ特性も条件も地域条件なども異なっているため

【論点1】なぜ再生可能エネルギーごとのコストベースが必要か 【その1】政策目的である「普及」を最優先するため

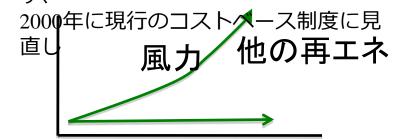

- ·「同じ量の導入なら安い」という議論の前に、「どちらがより普及するか」を検討すべき
- ・「同一価格の買い上げ」が普及に失敗したことは歴史的に立証されており(別掲)、「同じ量の導入」という前提が成り立たない

同じ量の再生可能エネルギーを導入するに当たり、ケース①の方が買取費用が少なくて済む。 換言すれば、同じ買取費用をかけたときにケース①の方がより多くの再生可能エネルギーを導 入できる。

【論点1】なぜ再生可能エネルギーごとのコストベースが必要か 【その2】全量買取制度の基本原理に基づく考えから


- ・全量買取制度の基本原理は「普及すればするほど安くなる」という 技術学習効果
- ・技術学習効果は再生可能エネルギーごとに異なる
- 一律価格で普及しない再生可能エネルギーは安くならない

左図は、累積設置量が2倍に達するときにコストが下がる技術学習効果。R=0.77とは、それが1から0.77、つまり23%コストが低下することを指す


【論点1】なぜ再生可能エネルギーごとのコストベースが必要か 【その3】「一律価格での買い取り」の歴史的な失敗から

- ・一定価格の代表例のRPSの失敗は欧州が歴史的に実証
- ・その他にも、90年代のドイツ・英国なども失敗

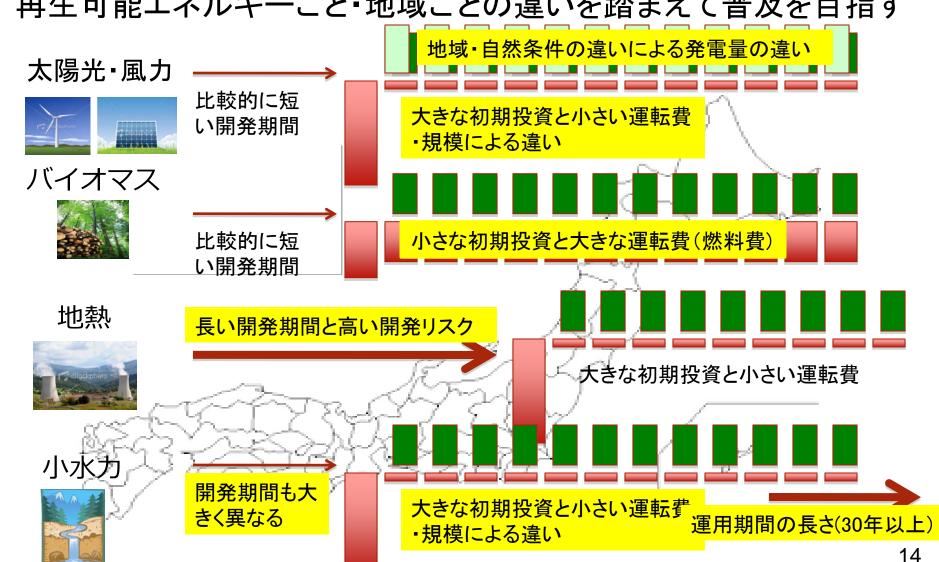
90年代のドイツ

一律電気料金の90%で買い上げ、風力だけは普及したが、他の再工ネは普及せず、

90年代の英国

一律価格に近い競争入札を導入し、普及に失敗し、02年にRPSを導入したが再失敗 **狙し** 現実

【論点1】なぜ再生可能エネルギーごとのコストベースが必要か 【その4】価格を決定する基本原理となるため


- ・再生可能エネルギーはそれぞれが事業として成立しなければ普及 せず、そのためには、投融資が不可欠である
- ・長期金利4%の融資で成立する事業の穏当な事業利回りは、15~20年で8%程度がコンセンサス
- ・各再生可能エネルギーの技術学習効果(前掲)に沿って、この事業利回りから、価格低下を事前に計画&アナウンスできる
- ・5MW以下程度の小規模な地域エネルギー事業や規模の異なる太陽光なども、この原則で価格決定ができる

	日本(現状)	ドイツ	フランス	オンタリオ州
買取対象	余剰のみ	全量	全量	全量
買取期間	10年	20年	20年	20年
住宅用	¥48	¥57.5	¥80.5	¥65.8
小規模	¥24	¥52.9	¥43.9	¥52
事業利回り	▲6%	7%	8.5%	8%

※「15年の事業利回り(IRR)=8%」は長期金利(約4%)に適正な利益を乗せた水準として国際的にも推薦されている(UNEP-SEFI)

【論点1】なぜ再生可能エネルギーごとのコストベースが必要か 【その5】自然エネルギーはそれぞれ特性も条件も地域条件なども異なっているため

・ 再生可能エネルギーごと・地域ごとの違いを踏まえて普及を目指す

普及目的の初期補助金を廃止すべき8の理由

初期の補助金なしでも、全量買取費用だけで採算が取れる買取価格を設定すれば、初期投資は融資で賄える

- 1. お金の非効率・・・約1割もの税金が手数料で消える(現状でも約40億円のロス、市場拡大すればさらに大きくなる)
- 2. 効果の非効率・・・発電量と無関係に一定のお金がもらえる
- 3. 時間の非効率・・・申請者も国も膨大な事務作業が発生する
- 4. お金の制約・・・普及が年1回の予算の範囲内に限定される
- 5. 時間の制約・・・設置が年1回の補助交付期間に限定される
- 6. 制度が無用に複雑化・・・全量買取制度を入れた後も、わずか1割の補助金を残す理由なし
- 7. 税金の節約・・・国税は膨大な借金(国債償還)に充てるべき
- 8. 補助金を口実にした押売商法を助長する

【論点2】なぜ「余剰」ではなく、「全量」としなければならないか?

【その1】「全量」でなければマニフェスト違反

- 「全量」か「余剰」が分かれるのは住宅用太陽光・小型風力などのみ。
- 他の再生可能エネルギーは「全量」を言うまでもなく、すべて系統に流れ込む
- 必然的にマニフェストの「全量」は住宅用太陽光(小型風力を含む)を指す

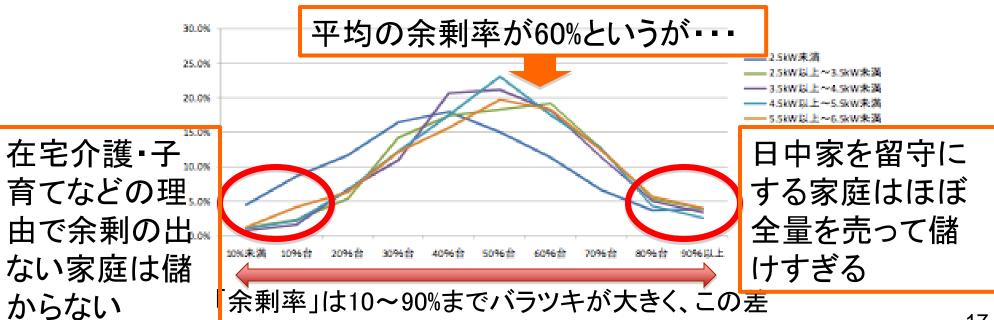
【その2】「全量」でなければ十分に普及しない

- 余剰に限定すると、十分なインセンティブを得られる対象が一定規模の家庭でしか も十分な余剰を出せる一戸建てに限定されるため、普及が限定する
- 一定規模以上のビル・事務所などに広がらない

【その3】「余剰」は不公平を制度化する(次ページ)

- 同じような条件の一戸建てでも、余剰率は10~90%にバラついているため、社会的に不公平な制度となる
- 省エネ効果が多少あったとしても、この不公平という弊害を埋めることはできない

【その4】新設を対象とすれば配線工事(追加)費は不要


- 経産省は配線工事を心配しているが、新設なら全量も余剰も工事費は同じ。
- 新設を基本とするため、追加工事費の懸念は不要

【論点2】なぜ「余剰」ではなく、「全量」としなければならないか? 余剰電力はバラツキが大きく、不公平な制度となる

- ・ 家庭の規模(数kW)でも「余剰率」は10~90%までバラツキが大きい
- ・ 規模が大きくなると(数十kW~)、ほとんど「余剰」が期待できない
- マンションのベランダ太陽光も、ほとんど「余剰」が期待できない

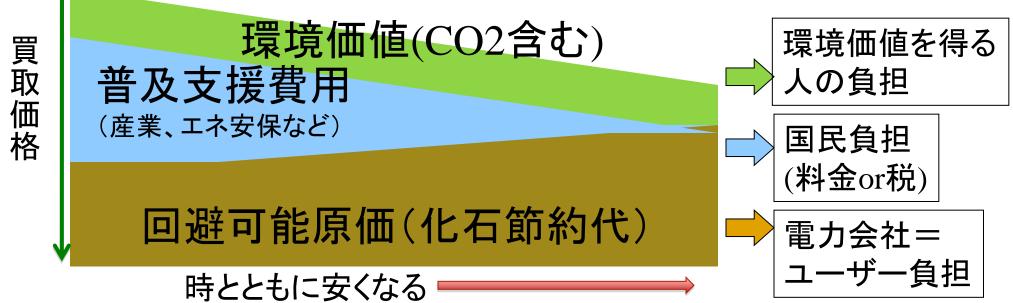
(参考)住宅用太陽光発電設備における余剰電力比率分布

○全体の7割程度を占める家庭等における発電設備について、全国から無作為に抽出した2万軒の 住宅につき、一定の前提に基づきその余剰電力比率を調べたところ、概ね60%弱となった。

は「省エネ努力」では埋められない

【論点2】なぜ「余剰」ではなく、「全量」としなければならないか? 余剰電力は「ダブル発電」の問題が再燃する

- ・余剰電力だと、現在も抱えている「ダブル発電」の問題が再燃する
- ・ 本来、支援すべき「家庭用小型風車」が排除されたまま
- 太陽光とガスコジェネを入れた家庭が不利になる不公平



【論点3】負担原則をもとに環境価値の帰属を設定する

- ・全量買取制度で普及する再生可能エネルギーの環境価値については以下の2オプションがありうる。いずれも排出量取引と共存可(オプション1)系統全体で案分する~ベースラインクレジット市場が縮小する(オプション2)選択する人が保有する~ベースラインクレジット市場が大きくなる
- ・RPS(過渡的に抹消)とグリーン電力や東京都クレジット市場の存在 を前提に、エネルギー選択オプションを残すには後者が望ましい

「系統への影響」で制約される風力発電

北海道電力を皮切りに、次々に風力発電への総量規制を打ち出す電力会社

	最大出力('05)	
北海道電力	650万kW	15万kW('99)
		25万kW('02) 総供給力の3.8%
		解列枠5万kW('06)
東北電力	1660万kW	30万kW('01)
		52万kW('06) 総供給力の3.1%
		* そのうち蓄電池入札10万kW
北陸電力	811万kW	15万kW(06) 総供給力の1.8%
四国電力	686万kW	20万kW('05) 総供給力の2.9%
中国電力	1220万kW	62万kW('08) 総供給力の5.1%
九州電力	1941万kW	70万kW('06) 総供給力の3.6%
沖縄電力	193万kW	2.5万kW('06) 総供給力の1.3%

・しかし、日本の15倍の設備容量のあるドイツでは制約なし。欧州委員会では20%までは制約不要との見解

欧州の「優先接続」、米国の「オープン接続」に対し、日本の「原因者負担」は対極

- ・ "Priority Access/ Open Access"(優先接続、オープン接続)とは
 - 一般に、ある地域の送電系統に対して、第3者の発電事業者や電力供給者が利用することに対して、「優先」 (Priority)もしくは「開放」(Open)することを指す。
 - 欧州では自然エネルギーを送電系統に接続することを「優先」する場合に使われる場合が多いために "Priority Access"という呼び方が中心であり、米国ではIPP一般に対する送電系統の利用開放という意味合い から"Open Access"という呼び方が中心に用いられる。
 - 米国は1978年のPURPA法、欧州は1990年ドイツのEFL法が起源

系統に関わる措置	ドイツ	英国	日本	
【初期設置時】				
優先接続の有無	優先接続の有無 法定により優先接続義務 法定により接続 (他の電源と同語		電力会社との連系協議次第	
初期接続負担	初期接続負担 発電事業者 発電事業者		発電者負担(原因者負担)	
系統の増強費用	系統運用者(電力料転嫁)	発電事業者	発電者負担(原因者負担)	
【運転時】				
インバランス費用	インバランス決済免除	当初:インバランス決済の 適用(他の電源と同等) 後に、修正対応	未検討。ただし、北海道電力は独自試算に基づく導入制約	
【参考】				
価格優遇	固定価格優遇制度	RPS	政府の設置補助金	
	追加費用は再配分	5MW 以下は FIT	RPS	
			自主的購入メニュー	
その他			電力会社による導入枠と入	
			札	

FITの国民負担と他のエネルギー負担

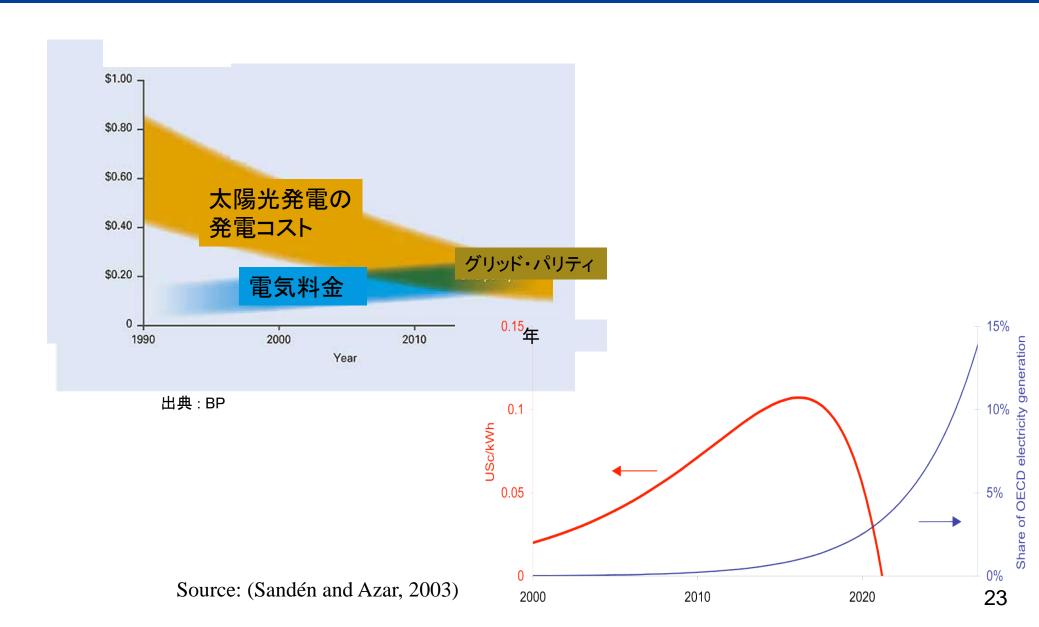
フィードインタリフ 100 ~500円/月・世帯)

炭素費用 ?/月•世帯

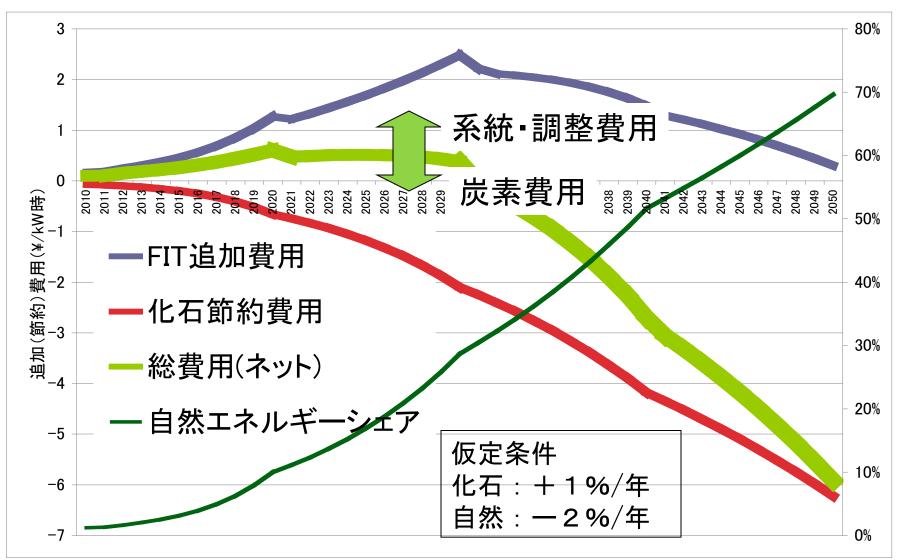
燃料費調整制度 約500円/月·世帯(08年)

電促税(0.375円/kW時)) +再処理引当金(0.35円/kW時) 約200円/月•世帯

他の電気料金


日本の化石燃料輸入額の推移

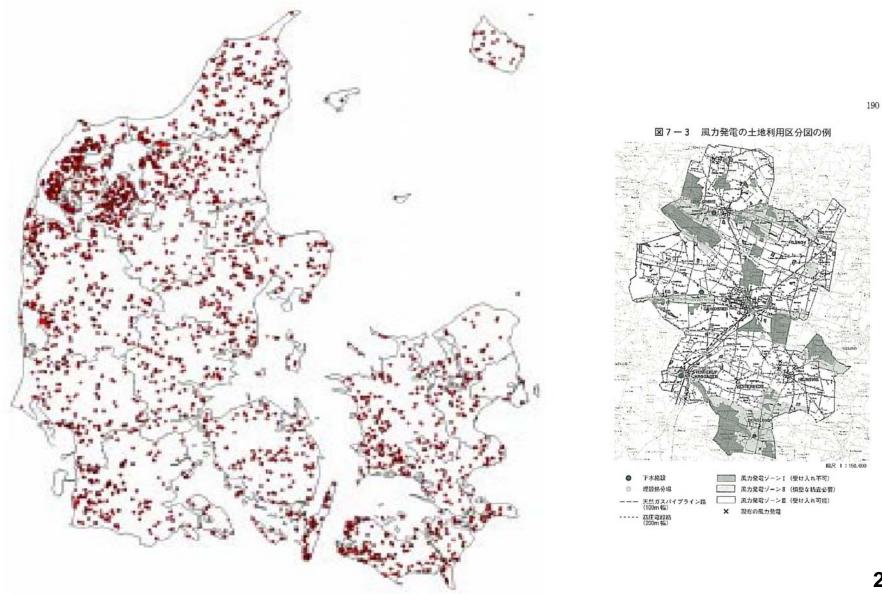
(出典)桜井啓一郎氏作成(元データは財務省貿易統計)



固定価格買取制度は長期的に国民負担を引き下げる

全量買取制度の負担と便益は長期的な視点で考える

• 当面の「負担」は、将来への「大きな投資」となる



日本の自然エネルギー市場の制約要因(風力発電の例)

- ・日本の風力発電市場は「四面楚歌」で停滞
- これに対し、縦割り官庁はまったく無策

自然エネルギーが地域社会と共存することを前提とした新しいルール作り

再生可能エネルギーの全量買取制度ISEPオプション

- 固定価格買取制度について、全量買取を基本としつつ、再生可能エネルギーが最大限導入することで、 将来の気候変動やエネルギー供給のリスクを回避し、かつ化石燃料の高騰や核廃棄物処分などで生じる 将来世代の負担を最小限に抑える持続可能なエネルギー供給を目指す制度設計を行うこととしたい。
- 〇買取対象、買取価格、買取期間等の論点については、様々な選択肢があり、組み合わせ方(ケース)も多数 考えられるが、**諸外国および日本の豊富な知見を踏まえ、その成功や失敗を謙虚に学びつつ、公共政策と** しての原則と上の目的に照らせば、自ずから選択肢(オプション)は限定されることとなる。

ケース	A.買取対象	B.住宅用太陽光 の取り扱い	C.新設•既設	D.買取価格	E.買取期間	買取総額 CO2削減コスト
ISEP	A3:実用されている 「持続可能な自然エネルギー」 ・中小水力(1万kW以下の持続可能な水力) ・近代バイオマス (効率80%以上の燃焼) ・太陽光発電 ・風力発電 ・地熱発電	B1 全量買取	C1 新設	D3 段階的低廉型 のコストベース ・種類毎 ・条件毎(規模等) ・価格低下の予告	支援期間15年 その後は 回避可能原価 + 環境価値	短期:大 長期:小
備考	「New Renewable」を基 本とする	・不公平の悪影響 は甚大 ・「省エネ効果」は限 定的	既設は既契約 でカバー ・既設RPS契約 を保全する	•プロジェクトIRR 8%(15年)が基本		


「未来は予測するものではない、 選びとるものである」

ヨアン・ノルゴー

特定非営利活動法人 環境エネルギー政策研究所

〒164-0001東京都中野区中野4-7-3 03-5318-3331 Fax 03-3319-0330 www.isep.or.jp

http://www.re-policy.jp/